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1. INTRODUCTION

The Bernstein polynomials given by

and the relation between their rate of convergence and the smoothness of
the function they approximate is a topic which has been investigated at
great length (e.g., [1,2,3,4,6,7]). Berens and Lorentz [1] showed in
1972 that, for 0:::; C(:::; 2, 0</3<2, X=x(l-x) and{(X)EC[O, I],

X ~/2IBnU; x) - f(x)1 :::; M~~')
n

implies, for [x - t, x + t] c [0, 1],

X-,/2 I/(x - t) - 2/(x) + /(x + t)1 == X '/2 ILl; f(x)1 :::; M 1(f) (~r/2 (1.3)

and that, for C( = /3, (1.3) and (1.2) are equivalent. (This latter fact was also
proved by R. DeVore [2].) In [3 and 4] I showed that (1.2) and (1.3) are
equivalent for 0:::; C( :::; /3 < 2.

Although the most important cases seem to be rJ. = 0 (characterizing
IIBnU;')-f(')II=O(n-/i/2)) and rJ.=/3 (characterizing the rate of con-
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vergence for IE Lip* fl, i.e., 11.1 ~ I(x )11 = O( til)), the fact that the question as
to what happens when rt. is bigger than fl has remained open was a real
annoyance. I was also reminded of that gap by Berens during his visit to
Edmonton in the summer of 1983. In this paper it will be shown that (1.2)
is equivalent to (1.3) for °~ rt. < 2 and °< fl ~ 2 (at least in case rt. + fl ~ 2).
That is, we drop the condition rt. ~ fl and the condition f3 < 2 as well; the
latter is essentially a separate result, being a saturation theorem.

2. EQUIVALENCE OF AN INTERMEDIATE SPACE

AND SMOOTHNESS CONDITION

The crucial step of the proof that (1.2) and (1.3) are equivalent is charac­
terization of a certain intermediate space. We recall the space C, as the
collection of functions 1, 1E C[O, 1J for which II(x( 1- xW ,/2 l(x)IIL

L
[O.11 ==

III lie, < 00 and the space C; a collection of functions in C[O, 1J which are
twice differentiable locally in (0, 1) (f and f' are locally absolutely con­
tinuous) and for which the seminorm II(x(1-x))I- (,/2)f"(x)IIL,[o.11 ==
III II c; is finite. The real (Peetre) interpolation space (C" C;) fi is the
collection of 1 for which K(t2, f)jt l! < M(f), with norm sup/(K(t2, f)jt ll ),

where K(t2,f) is given by K(t2,f)=inff=fl+h(II/,llc,+t21Ij~llc;).

We are now ready to state the main theorem for this paper.

THEOREM 2.1. For I(X)EC[O, IJ, X=x(1-x), O~rt.<2, O<f3<2 and
rt. + fl ~ 2 the conditions

(a) X- a/2 IBn(f, x) - l(x)1 ~ Mn- fi /2
,

(b) 1E ( Ca' C;) II' and
(c) x- ,/2 1 I(x - t) - 2/(x) + I(x + t)1 ~ (t 2jX)/I/2

are equivalent.

Remark. Theorem 2.1 is our result for fl < 2, for fl = 2 (a) and (c) are
equivalent but this is a saturation rather than an inverse theorem and will
be proved in the next section.

Proof The equivalence of (a) and (b) was shown in [1, Theorem 4,
p. 703]. Condition (b) implies (c) was shown in [1, Theorem 5, p. 706]. To
show that (c) implies (b) it will be sufficient to construct for every ,

1=/1.r+ 12,r such that 11.r EC" 12,r EC;, 11/',rllc,~L,P, and 11/2,rllc;~
L,fi - 2 and, therefore, K( ,2, f) ~ 2L,P. This was not done directly in [4J for
rt. ~ fl, where instead, equivalence of (c) with the space (Co, qa/P)/i was
shown and that space implied (a) which in turn implied (c) and that com­
pleted the proof. Here the use of the exact expression of (a), though in a
very small part of the proof and though it will not be needed in many of
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the cases (if a. + f3 < 2), is crucial. (That is, we do not prove (c) implies (b)
directly). As in (a), (b), and (e), an additional linear polynomial would not
make any difference (we wrote K(t2,f) = infl ! + h ~ I( II fill c, + (2 II f~ II c;)
rather than K( (2,f) = inf/! + Ii ~ j( II fl II C, + (2( II f~11 c2 + U~II c)) which is
equivalent to emphasize that point), we' may assu~e flO) = f(l) = O. We
can also concentrate near one of the edges of the interval [0, 1], say 0, as
f(x) = f(x) lj;(x) +f(x)(1 - lj;(x)) with lj;(x) a decreasing C: function
which satisfies lj;(x) = 1 for x ~ *and lj;(x) = 0 for X? ~ and we will treat
heref(x)lj;(x) butf(x)(I-lj;(x)) can be treated in the same way.

We recall the Stekelov means f;,(x)==(I/h2)jhi~li2Jh~'.2f(x+ul+1I2)

dUI dU2 for which If(x) -fh(X)I ~ max,sh 1L1;f(x)1 and(;;'(x) = 1//z2L1U(x).
We further define lj;k(X) == lj;(4 kx) and for 2 I 1<, ~ 2 I.

I I

g,(x)= I f2!' J(x)lj;k(x)(I-ljJhl(x)),
k ~d)

The functions f2 / , J(x) are defined for X? 2 I k .1 but here we need it
for X? 4 k- 2? 2 I k -.1 otherwise 1- lj; k+ I (x) = O. We would complete
the proof if we showed

IX "/2(f(X) lj;(x) - gr(x))1 ~ L,II

IXI (Yi2Ig~'(x)1 ~ L,II 2

(2.1 )

(2.2)

(2.4 )

for all x with L independent of ,. We will show (2.1) only for X? 3· 4 I I

(and (2.2) for all x).
To prove (2.1) we remember that

I I

f(x) lj;(x) = I f(x)t/tk(x)(I-lj;k+j(x))+f(x)lj;/(x) (2.3)
k~O

and therefore we have to show for 2 I I <, ~ 2 I,

x>/21~t~ (f(x)-f~ /-;J(X))lj;k(X)(l-t/tk+l(X))I~L,li

for all x and X->/2 II(x)1 ~ K2,li only for x ~ 3 ·4 -1- I, i.e., on the support
of lj; I(X). We will prove (2.4) for all x and therefore (2.1) for 3·4 - I I < x.
In the sum constituting (2.4) for any given x all but at most two terms are
equal to zero as the function lj; Ax)( I - lj; k + I (x)) is different from 0 only for
4 k-2<X<3·4- k-(. We will use the inequality If(x)-f~(x)l~

KXI> 11)/2hfJ~K(1)X"/2X-fJ/2hfJ for x<~. We have now for 4-k-2~X~

3· 4 k-l,

X->/2 If(x) - f2-H J(x)1 ~ K1(2 -I-k 3)/1(4 -k -2)-11/2~ K(2 'lfJ ~ K
2

,fJ

and L of (2.4) for X? 3 . 4 1- I is 2K2 . We now prove (2.2) (for all x).
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J(x)) I'l/J~(X)'

Again only at most two terms being different from 0 in the sum defining g"
and therefore for 4 -k - I ~ X ~ 4 \

X I- ai2 (~Y (g.(x)) = X
I
-

a
i
2
(:xY [f2- 1-k-3(X)

+ (f2-I-k-2(X)-f2-I-k J(x)) l/Jk(X)]

and for X~4-ll, gr(x)=O (and therefore g~(x)=O). Using f~(x)=

h- 2L1j,f(x) and therefore for x>h, IX 1 - ai2n(x)1 ~KXI-aI2h-2hlix(a-f3)i2

= KXI-lii2h - 2+ Ii, using which we may write for 4 -k - I < X < 4-\

ai2 (~Y gr(X)! = 3KXI lii2(2 l-k-3)-2+ fi

1'21 d+ 2X a/ - (f2-I-k ,(X) - f2- ,- k
dx

+XI -ai2Ij~_I_k-2(X)_ f2 l-k-3(X)llrjJ~(x)1

We have II ~ K ,(2- 1)1i 2~ K2 r li - 2. Using the estimate of If- fhl to get
an estimate for Ij~1J -fh21 and the estimate IrjJ~(x)1 ~A(4k)2 (A is indepen­
dent of k), we have for 4- k

I ~x~4-\

I3~X' ai2K1[(2 Ik 3)li(4-k-2)-lii2+(2-I-k-2)1i(4k-I)-lii2] A42k

~K3(2 1)li-2~K4rf3 2.

To get the estimate of 12 , we use the estimate for t/J, t/J" E C[a, bJ given by
IWIIC[u.h]::s;M(b-a)--l IlcpllC[u.h] + (b-a) IW'IIC[u.h]), where M does not
depend on b and a (see, e.g., [4,p.310]) with t/J(X)=f2Ik-2(X)­
f2-I-k-3(X), b = 4-\ a = 4 -k-', and the estimate of t/J and t/J" as in II and 13 ,

We have I2::S;Kr li 2 when we recall IrjJ~(x)I::S;AI4k in addition to the
above. For 4 1 I < X~ 4 -I we estimate Xl - ai2 g ~ (x) similarly but we have
to use If(x)1 ~MIX(a+li)i2 which we will prove in Lemma 2.2. It looks at
this stage that we do not have yet "(c) implies (b)," but we do have
Ix-ai2(f(x)-gr(x))I~Krli for 3'4-I-l~X~1-3'4-I-l or 3r2~x~

1~3r2 and Ix'-ai2g~(x)1 ::S;Kr li - 2 always. We choose now for a given n,
rn=1/3~ and for 3r2::s;y::S;1-3r2 we have 1(l/n)::S;y::S;1-1(l/n).
Therefore,

IX- ai2(BnCf, x) - B2n(f, x))1 ::s; IX- ai2(Bn(f - g" x) - B2n(f - g" x)1

+ IX- ai2(Bn(g" x) - B2n(g" x)1

=- I(n, rn) + J(n, rn)'
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To estimate l(n"n), we replace /(y)-g,(y) by I/J(f,n,y)=
(f( y) - g ,Jy)) X[1 /3n, 1 - (1 /3n) J (where X( A) is the characteristic
function on A); this would not affect l(n, Tn) as /(0) = /(1) = gAO) =

g T( 1) = 0 and for 1/2n ~ y < 1 - (1 /2n) the expression is the same with I/J as
with / - g,. The function I/J satisfies X a/2 II/J(f, n, x)1 ~ K,/3 for all x.

We have now

l(n, Tn) ~ X- a/2 IBn(I/J(f, n, '), x)1 + x· a/2IB2n(I/J(f, n, '), xl

=lj(n, 'n)+J2(n, Tn)'

To estimate l;(n"n) we follow [1,p.704J (it does not matter that
I/JU; n, y) is not continuous at 1/3n and 1 - (l/3n)) to obtain

ll(n, Tn) ~ X-,/2 IBn(I/JU; n, '), xl ~ X-,/2 "tG(1- nr2

p'\I/(X) III/JII C,

~ 1II/JIIc,~K,!:

or l(n, '1/)~2K,;:. For J(n, '1/) the situation is easier as g,(x) is defined on
[0, 1J and satisfies Xl - ,/2 Ig;(x)1 ~ K,(I 2 and, using the inequality (25) of
[1, p. 704], one obtains

Recalling '1/ = 1/3~, IX ,/2(BI/U; x) - B2J[;.,<)) I~ Rn-(1/2 (where R
does not depend on n or x). Therefore,

and this is (a) which, according to [IJ, implies (b) which completes the
proof.

We will prove now the estimate of I required in the proof of
Theorem 2.1.

LEMMA 2.2. For /EC[O, IJ, /(0)=0, and a+f3<2, X ,/21L/;/(x)1 ~

M(t 2/X)/31 2 implies 1/(x)1 ~ M 1XI,+ (il/
2

.

Proof Set t=x and write 1/(0)-2/(x)+ /(2x)1 ~Mxln/3)j2. Hence

1 IlL 2I' + (il1/2 1
1/(x)1 ~ M"2 x 1H /3)/2 +"2 1/(2x)1 ~ M"2 xl' + !iJ/2 I 21 + 2L /(2 L x).

I~()
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Set !~2LX~~, 2-L-2~X and If(2 Lx)1 ~ Ilfllno.l] and we obtain our
result for ,I. + f3 < 2. For rJ. + f3 ~ 2 we write ! < ( < ~ and use
12f(x)-f(2x)1 ~Mx which implies If(O-2nf((/2 n)1 ~2Mx or
If(x)1 ~Mlx for x~!.

3. THE SATURATION CASE f3 = 2

The saturation result is given by

THEOREM 3.1. For fEC[O, I] and X=x(l-x) and 0<rJ.~2 the
conditions

(a') X-~/2IBn(f,x)-f(x)1~Mn-I,

(c') XI-~/2If(x-t)-2f(x)+f(x+t)1~Kt2, and

(d) f and l' are locally absolutely continuous in (0, 1) and
II Xl - ~/2f"(X )11 Lx[O.I] ~ L

are equivalent.

Proof For rJ. = 2 the theorem was proved by Lorentz in [7,
pp. 102-108]. It follows from Berens and Lorentz's paper [1] that
IBn(f, x) - f(x)1 ~ (7/n)I-~/2(X/2nt/2 Ilflle which would prove (d)
implies (a') if Xl - ~/'i" E C[O, 1], but there' is no difference in the proof if
we assume only XI-~/2f"ELXJ[0, 1]. To show that (c') implies (d) for
rJ. #- 2 is a simple exercise especially as we may use (c') on the intervals
[2 1-1,21

] and on [1-2- 1,1_2-1
- 1] for I integers and recall that on

these intervals the weight function Xl - a/2 is bounded from both sides in the
same way in (c') and (d). To show that (d) implies (c') we use the Taylor
expansion with integral remainder. With no loss of generality, we restrict
ourselves to x ~ ~ and 0 < t < .! and get

Xl - a/2 1,1; f(x)1 ~ x l
- a/2 [I L'-I (u - X + t) f"(u) duI

+1L'+t (u-x-t)f"(U)duIJ

:< L I _. al2 [fX u+t - x d +fX +t X +t - u d J
'" X I ~/2 U I ~/2 U.

X-I U x U

Obviously, S~+'((x+t-u)/ul-a/2)du~~(I/xl-~/2)t2. We also have
S~ _I((U - x + t)/u 1

- ~/2) du ~ ~(l/(x - t)l- ~/2) t2 and j;_t((u - x + t)/
ul-~/2)du~joua/2du=(I/(I+rJ./2))xl+a/2which we use for x>2t and
x~2t, respectively. For x>2t we have x l - a/2 I,1;f(x)1 ~

640/50/1-4
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(3.1 )

LxI a/2(W/x l - a;2)+W/(x/2)1 ai2))t2~Kt2. For x~2t we have
XI- a/2 1L1;f(x)1 ~ LxI a/2«(1/(1 +:x/2)) Xl +a/2 + ~(t2/xlai2)) ~ L(t2/2 )

+ L(x2/(1 + :x/2)) ~ L I t 2
.

We are left now with the main part of the proof which is to show (a')
implies (d). Here we utilize a local saturation theorem as the global result
[7, p. 102] would not allow us much leeway with a weight function near °
and I. We prove it directly as it seems much easier than showing how the
proof of an earlier result [6] applies to what we need here.

For fE C[O, I] and fE C2[0/2, 1- (0/2)] we have

. x(1-x)
hm n[BnCf, x) -f(x)] = r(x)

n4 if· 2

uniformly in [0, 1 - b] (see, e.g., [6, Lemma 3.2], but actually the above
is a straightforward computation using Taylor's formula for f(k/n)
expanded around x). For X '/2IB"U;x)-f(x)I~Mnl we have
X- a/2 IBn(f, x)-f(x)1 ~Mn-3/4 and, therefore, X- a/2 1L1;f(x)1 ~

K(t2/X)3/4 or for XE [6/2,1- (b/2)], ILIJI ~ Kbt. For gE C aJ such that
Supp g c [b, 1 - b], ILl JI ~ K,jt for x E [<5/2, 1 - (012)] and fE C[O, I],
we use the Taylor expansion of g(x) around kin and recall the actual value
of H(x - (k/n))' P"Ax) dx for i = 0, I, 2 [7, p. 106] to obtain

I{ n(BnU; x) -f(x)) g(x) dxl

~ In L~of(~) g G)~- {f(X) g(x) dx}1

+ I(n + l)\n + 2) k~O fG) g' (~) (n- 2k)1

+n(n ~ I) ILl (~) g"(((n, k) lG- (~r) + 0 G)1/

Now for b/2 < ko/n < 6,

n IIlk + II/n + I l (k) (k) 1III = n I f - g - - f(x) g(x) dx
k~o kin +Inn

n ko {Ilk + 11/" + I I .(k) I (k)~ n I j - - f(x) g - dx
k~ ko kin +Inn

Ilk+lli"+11 (k)1 }+ g(x)-g - f(x)dx
kin + 1 n
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~ n ( K b ~ II gil qo.!] +~ 11g'11 C[O,I] II I II qO.I]) ~ K b II gil + 11g'11 III II,

1 1
12~2n 11/1111g'll n~ 1I/IIIIg'll, and 13~C-II/llllg"ll,

n n

47

As an alternative to the estimate of In S(BnCr. x) - I(x)) g(x) dxl we
could have recalled instead a much more complicated result [6,
Lemma 3,4], but an attempt is made here to show that we need only
a very crude local result. We have now for If E C2 and for <tj;, r/J) ==
Jb tj;(u) r/J(u) du,

lim <n(BnUf' x) - ff(x)), g(x)

= <x(l - x) I;'(x), g(x) = <ltC'i), (x(l - x) g(x))"),

Obviously, we can choose If --> I in the norm II I - fill Cr o I] +
Sup/(l/t) 1111 ref - If)11 CI<il2,1 .~ 1"12)] and therefore

lim <n(BnU; x)-f(x)), g(x) = lim lim <n(BnUf' x)- ff(X), g(x)
n-+:f. n-+OCJI-+'XJ

= lim lim <n(BnUf,X)-lf(X)), g(x)
I_,x, n-x

= lim <J;(x), (x(l-x) g(x))")
/-+ oc'

= <f(x), (x(l-x) g(x))"),

We now recall (a standard technique) that IX-'/2n(BnU; x) - l(x)1 is
bounded in C and therefore Iln(Bn(f, x)- f(x)ll q '5,b] is bounded and has a
weak* accumulation point, say r/J in Lcc[b, 1-<:5], Consider g as a
function in L 1[b, l-bJ; we have limn,~oc<ni(Bn(f,x)-f(x),g(x)=

<r/J(x), g(x). (Of course different subsequences may be needed for different
g). Now <r/J(x),g(x)=<f,(x(l-x)g(x))") for all gECOC Suppgc
[a, bJ and [a, b J c (0, 1) and therefore r/J = xCi - x) r in L oc [a, b]. The
crucial point is that the above is true in any subinterval of [0, 1J (which
does not contain °or 1), in particular in [2- f

I, 2- f+ IJ (and [1-2- f+ l
,

1-2-f- 1J), and in that interval r/J=x(l-x)rELoc[2-f-I,2-f+1J the
weak* accumulation point of n(Bn(f,x)-f(x)) in [2- f- I,2- f+ IJ is
bounded by Iln(Bn(f, x) - l(x)11 C[2~/~1,2-/+I] ~ M(2 -f-IV/2 or
Ilx(1 - x) r(x)11 Lx[2-/~ 1,2~1+ I] ~ M(2~f- 1t l2 or II (x(1 - x) )1~ (aI2)

r(x )11 L, [2~/ 1,2~1+ 11 ~ 8M. This being true for all I completes the proof for
the estimate on r/J. The overlapping of the intervals is needed to express that
in the intersection we have a unique function (r/J=x(l-x)r) and
therefore we have one function on (0, I).
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Note added in proot I conjecture that (c) of Theorem 2.1 for 2 < 'Yo + II Implies I(x) =

II(x) + A 1 X and I(x) =f~(x) + A 2( 1- x) where I1(x) = O(x'" . 1
112

) as x -> 0+. and f~(x) =
O( (I - X ))I n 111/2) as x -> 1-. This will allow us to drop the condition ex + (I 0( 2 in Theorem 2.1.
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